PHYSICAL REVIEW E 69, 011105 (2004
Dynamics of a passive sliding particle on a randomly fluctuating surface
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We study the motion of a particle sliding under the action of an external field on a stochastically fluctuating
one-dimensional Edwards-Wilkinson surface. Numerical simulations using the single-step model shows that
the mean-square displacement of the sliding particle shows distinct dynamic scaling behavior, depending on
whether the surface fluctuates faster or slower than the motion of the particle. When the surface fluctuations
occur on a time scale much smaller than the particle motion, we find that the characteristic length scale shows
anomalous diffusion witlg(t) ~t2#, where¢~0.67 from numerical data. On the other hand, when the particle
moves faster than the surface, its dynamics is controlled by the surface fluctuatiogét prd*? A self-
consistent approximation predicts that the anomalous diffusion exponént &3, in good agreement with
simulation results. We also discuss the possibility of a slow crossover toward asymptotic diffusive behavior.
The probability distribution of the displacement has a Gaussian form in both the cases.
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I. INTRODUCTION The Langevin equation for the motion of a partisleling
on the surface has the form
The advection of a passive scalar fi¢fdich as tempera-

ture) by a turbulent fluid is a well-known problefi], and is dXx(t) Tan o
an example of a coupled semiautonomous system, where one dt Pl xo @
of the fields evolves on it own, but affects the dynamics of
the other. Many such systems have been studied in receithereX(t) is the position of the particle on the surface and
times, such as the dynamics of a particle passively sliding ok is a friction coefficient. In principle, one could include a
a randomly fluctuating surfad@—4)], phase separation on a re_mdor_n noise term for the motio_n of. the particle also, but
rough substratf4], and clustering of particles on a stochas- SiNce its _onIy effect is to add a d|ffus.|ve term to the mean-
tically fluctuating surface under the influence of graviy. square displacement, we shall drop it from further calcula-
These studies have shown that such systems possess a ndians. . .
ber of nontrivial features. For example, hard-core particleﬁh Thl_ed_tlme e\t/.OIIUt'.On .Of thz n:ﬁan-squ?re displacement of
cluster into a fluctuation-dominated phase separated [&hte € sliding particie Is given by the equation,
and noninteracting particles have nontrivial density correla- d ¢
tions[2] in the steady state. It is thus highly desirable to aim d—(Xz(t))=2F2f dt’d(t,t'), )
for an understanding of the relation between the time evolu- t 0
tion of the stochastic fluctuations of the underlying field and

the dynamics of the passive scalar, and this is our primar;‘fvhere

motivation. "N_ 4

In this paper, we study the dynamics of a passive sliding P =(AAXO XD @
particle moving on a randomly fluctuating surface. For consig the “effective” noise correlator for the motion of the slid-
creteness, we choose the surface to be the one-dimensiongy particle, and is equal to the slope correlator of the fluc-
Edwards-Wilkinson(EW) surface with uncorrelated noise y,ating surface evaluatedong the particle trajectoriesThe
[6], whose steady state and dynamical properties are wellngylar brackets on both side represents average over differ-
known. As we shall see, even this simple example has unexnt realizations of the noisg(x,t). Clearly, this is a highly
pectedly rich properties. nontrivial quantity to compute, since it is not obvicagri-

For clarity of presentation, we shall state the problemq how the slope correlator would behave when averaged
here. Let us consider a one-dimensional fluctuating Edwardssyer such a set of highly restricted paths.

Wilkinson surface, whose equation of motion has the form  \we gutline our main results here. Numerical simulations

show that when the particle moves much faster than the sur-
face, its dynamics is controlled by the surface fluctuations,

dh - i ~
—=vV?h+75, (p(x,)n(x't")=2D&(x—x")S(t—t"). and the mean-square displacement behaveX&g))~ vt.

at An argument using the concept of overturning valleys con-
(1) firms this result. On the other hand, when the surface fluc-
tuation is fast, the particle moves in a very dynamic land-
scape, and the mean-square displacement shows anomalous
*Electronic address: manoj@owl.phys.vt.edu diffusion with (X3(t))~t2¢ over the time scales of simula-
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relation between a particle trajectory and the underlying sur- P(t,t",z)= £z
face height configuration, predicts that the anomalous

d|_ffu5|on exponent igh=2/3, in rea;onably good agreement whereé(t—t') is the characteristic dynamic length scale of
with numerical results. We also discuss the possibility that _ . . . . .
article motion. The scaling functiof{x) is required to sat-

the observed anomalous diffusion might be simply transien O -
behavior, and give reasons for the same. Isfy the normal|.zat|orf,mf(x).dx— 1. It also follows that the
mean-square displacement is

The rest of this paper is arranged in the following way. In

the following section, we present the self-consistent approxi-
_ . ; : (X)) =pné? ®)

mation to evaluate the correlator in E@), and discuss its '
predictions and limitations. In Sec. lll, we present the results B 5 )
of numerical simulations of the problem using the single-stepvhereu=J~.f(x)x°dx. We now substitute E¢(6) and (7)
algorithm. In Sec. IV, we summarize our findings and discusénto Eg. (5). The effective noise correlator thus becomes
the outstanding questions.

tions. A self-consistent approximation which assumes no cor- 1 (z)
—f| = ,

G(T)
d(t,t')= ( . T=|t-t'|, (9)
Il. THE SELF-CONSISTENT APPROXIMATION T

Let us definez= X(t) —X(t"), which, like X(t) itself, is a where
random variable. Let us now sort the set of all available
surface configurations usirgj i.e., for fixedt andt’, let S,
denote the set of surface configurations where a sliding par- G(T)= D\/;fwdr;f(\/;) e (E1vT)y
ticle is displaced by a distanee- Az between timesandt’. v Jo N '
The fraction of such configurations is simplB(t,t’,z)Az,

where P(t,t’,z) is the (unknown probability distribution we note thatG(T) is proportional to the Laplace trans-
function for particle displacements between timesidt’. It~ form of the function g(x)=x"Y%(x), i.e., G(T)

r2

&

7=—. (10

then follows that = (Dw/v)g(\) with A= (£%/vT). We now conjecture a
power-law growth of the characteristic length scélat late
<I>(t,t'):J dzRLL 2)(ANX).DohXO 2t g, oS
(5 &bt=at?, t>tg, (12)

Note that the average in E€p) is a restricted average, i.e., it Whereg is the dynamical exponent that characterize the par-

is evaluated over surface configurations in which the slidingicle motion andt, is a microscopic time scale. From the

particle is moved by a distaneebetweent andt’. preceding equations, it is clear that consistency requires
Up to now, our treatment has been exact. In order to make> 1/2. For, if $<1/2, the left-hand sidélhs) in Eg. (3)

further progress, we make an approximation by assuming/ould vanish at large, whereas the right-hand sidehs

that the restricted slope correlator in E&) is simply the would not. The valuep=1/2 is also inconsistent with this

standard slope correlator of the surface, evaluated at the seguation, since the Ihs would be a constant whereas the r.h.s

of points (0t) and (z,t'). In other words, we assume that the would grow asy/t at large timet. Thus the only possible

particle trajectory is not so strongly correlated with the sur-values arep>1/2. We now focus on the largetimit, where

face slope configuration, such that averages of surface chaihe Laplace transform variable— . The behavior of5(T)

acteristics are not affected. Numerical results show that thi# this limit follows from the following theoreni8]:

approximation is justified except when the particle motion is

slower than the surface fluctuations. We shall discuss this _ _ APHIGN)

case shortly, and assume for the time being that this assump-  limy_ox~"g(x)=limy . ————, p>-1. (12

tion is valid. This approximation is the most crucial step in p:

our calculation.

For the Edwards-Wilkinson surface, the slope correlatorC o;tstIZn;e%SSVr;ﬁfrl\ecs;;i)s En)zf‘\l,tzhz(g()_:% aFrr:)(::an nl(igl)ng
can be computed exactly, and the resultfs t>t") ' ’ 9429,

it then follows thatp=—1/2, and hencg(\)~ (1/\\) as
N—oo. Thus, the asymptotic form d&(T) is

.. D T z
(0D a1 =T\ e — ) 7Df(0) ¥T
14

(6) G(T)= &(T)’

T—oo. (13

Let us now conjecture the following asymptotic scaling form After substituting Eqs(8) and(9) into Eq.(3), and using the
for the probability distribution function of particle displace- largeT form in Eq.(13), the resulting self-consistent integral
ment equation foré(t) is
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d¢ TI'? #D tdT orderedheight configuration, where,= 1 wheni is odd, and

e o -, f(0) Joﬁ' (14 h,=0 wheni is even. A lattice site is selected at random, and
its height is updated in accordance with the above rules. For

We now substitute the power-law scaling form El) for the surface configuration, one Monte Carlo step is counted

£(T), which gives after N such attempted updates, whe\es the lattice size.
The surface then evolves through=10N? Monte Carlo
3 26-1 wDI'? £(0) 1-g time steps in order to reach the steady state. We used two
PPt T~ —— Tt , t=e (19 jattice sizesN=1024 andN=4096 in our simulations.

For a certain surface configuration in the steady state, we
After equating the powers of time on both sides, we findplace 100 particles on the surface at randomly selected loca-
¢=2/3, which is the principal result of this paper, along with tions. At each Monte Carlo step, after a surface update is
the prefactor complete, a particle is selected at randowith initial posi-
2 1/3 tion at lattice site, say and its position is updated according
DI’ - :
) _ to the following set of dynamical rules.
v (1) If *=1 and 7 =1, the particle moves one lattice

. - step in the clockwise direction with probabili <1).
We have thus arrived at the somewhat surprising result that P + _ P . (p=1)
(2) If 77=—1 and7; =—1, the particle moves one lat-

the sliding particle movefasterthan the surface fluctuations, . | . . . ) . .
gp tice step in the anticlockwise direction with probabilfy

wh rrelation length les with tim . Thi - . . .
ose correlation length scales with time st s st Essentially, the rules say that the particle only slides down

perdiffusive behavior formally has its origin in the long- . . . ,
range nature of the effective noise correlaxt,t'), which when the slope is favorable, and remains stationary when it
e ' is at a local minimum or maximum. The patrticle displace-

from Eq, (9) and Eq.(13), has a power-law tail of the form ments are measured such that for every move in clockwise

[t—t’|~¢. Similar anomalous diffusive motion of advected direction, X(t) - X(t) + 1, and for every move in anticlock
articles with¢=2/3 has been shown to occur in the one-"". Th AN ' : i
P ¢ wise direction, X(t)— X(t) —1. The particles are assumed

dimensional(nonlineaj Burger’s equation with noisg3,7], : . . . X . .
( J 9 q 8.7 noninteracting, which is consistent with the single-particle

i -fiel h. ) - .
using a mean-field approac picture. When the probabilitp>q, the particles moves fast

Before proceeding to discuss the numerical results, w lative 1o th ‘ i e Al ithout
would like to point out that the calculation presented aboyd &'ative 1o the surface motion andce versaAlso, withou

. : . . any loss of information, we set max@)=1. The parameter
's valid only if “mtﬂ”[\/ﬁlg(t)] vanishes, else we would we tune in the simulations is the ratic= p/g. The simula-

not be able to use E@12) to arrive at our result. Indeed, itis tions were run up to FoMonte Carlo steps fok=1024 and
quite possible that in the asymptotic limig(t)~\/vt, but  1¢f Monte Carlo steps foN=4096. We computed the prob-
that this regime lies outside the validity of this approxima-apility distribution of the displacement of the particles, as
tion. In such a case, the anomalous diffusion at early timegvell as the mean-square displacement, as functions of time.
can be still shown to exist, but with a different exponent. ToThe results were averaged over 100 different starting con-
see this, let us consider E(LO) again at sufficiently early  figurations forN=4096 and 1000 starting configurations for
timest so that&?(t)</vt. In this caseG(T)=D/v isa N=1024.
constant, and after substituting in E), and subsequently  |n Fig. 1, we have shown the results for the rms displace-
in Eq. (3), we find that£(t) ~t¥* when £€2< \/vt. From nu-  ment of the sliding particle plotted against the quantjty
merical simulationgto be presented in the subsequent secwheret is the number of Monte Carlo steps. The fractipis
tion), we are unable to rule out this possibility. Further dis-used to scale the time so that all the surface configurations
cussions on this point are presented at the end of Sec. IIl. pass through an almost equal number of updétethe con-
tinuum language, this is equivalent to using the combination
ll. NUMERICAL RESULTS vt). We have shown the results for four values of the update
frequency ratior: 0.01, 0.1, 1, and 10. The results for
In this section, we discuss the results of numerical simu— (.01 andr = 0.1 offers evidence for the power-law behav-
lations of the problem. The surface is constructed as a set g £~123 as predicted by the self-consistent argument. For
height variablegh;}, wherei=1,2,... N andNis the lat- > on the other hand, the growth of the rms displacement
tice size. Periodic boundary conditions are imposed on thgith time is much slower. In this case, the observed growth
surface. We use the single-step model of the surf@e  exponent is closer to 1/2 at all times. The casel displays
where the height difference between adjacent lattice pointgtermediate behavior, with an effective exponent close to
is restricted, i.e., the clockwise/anticlockwise slopesq 5g.

7. ==*[h;.;—h;] takes valuest1 or -1 only. The surface  Ajthough it is tempting to say that the cases1 andr

aN

evolves through the following set of dynamical rules: <1 are characterized by different dynamical exponents, we
(D) If 7" =1 and7; =—1, hj—h;+2 with probabilityq  would like to be cautious here. Our numerical data does not
(g=1). rule out the possibility that the observed anomalous diffusion

(2) If 7f=—1 and7, =1, hj—h;—2 with probabilityq. of the sliding particle whenm <1 is simply a transient re-
The large-distance, long-time properties of this model aregime, and the asymptotic behavior might be identical for all
identical to the continuum model in E¢l). We start from a  values ofr. In the scenario discussed in the last paragraph of
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1000
100
L 10f
< F FIG. 3. lllustration of a valley in the single step model: The
open circle shows the position of the particle at titseO and the
1 3 filled circle shows its current position. The horizontal straight line
E divides the surface into valleys and hills.
slope = 2/3
bl slide towards the local minimum, it gets “trapped” there. At
1 10 102 10° 104 10° all future times, the motion of the particle is “slaved” to the
qt dynamics of this local minimum. The long-time dynamics of

) _ _ _ the particle may be visualized using the conceptaifeysin
FIG. 1. (Color onling The figure shows the time evolution of e syrface. A valley is defined as a linear stretch of the
the root-mean-square displacement of the slldllng pgrtlcle for Sever@urface below a certain reference height, which we choose to
values of the update frequency. The short straight line at the bottorgg, e jnstantaneous height at the starting location of the
'S a guide to the eye, with slope 2/3. Wher'l, the dynamic particle (Fig. 3. It is well known that any instantaneous

exponent is close to 2/3, whereas whenl, it is close to 1/2. For . f . ’
- : . ! -height configuration of a EW surface relative to a reference
r=0.01, there is an early-time regime where the growth exponent is

smaller than 2/3, but the asymptotic behavior is identical to that oPO'nt on the surface is a random wdRW), W.hlch re_turns to
r=0.1. The lattice size in these simulationsNs- 4096. the origin afterN steps. Thus, the length distribution of the

valleys is simply the distribution of return times of a one-
the preceding section, the observed behavior might reflect dimensional RW to Its starting point, which follows a power-
slow crossover fromi~t34 to £~t'2 The data for =0.1 law plecay:P(I)~I for I_<N [10]. Let us now consider a
shows some bending far-10°, but at the moment we can- S€ction of the surface with length and letN.(l) be the
not conclusively say whether this shows the crossover tofUmber of valleys of length within this section. Since we
wards a diffusive regime, or simply a finite size effect. we €auire JdIN(I)I=¢, it follows thatN.(l) has the scaling
have checked that a smaller system sike=(1024) shows orm
bending as early as=10" (Fig. 2), which makes it likely
that this is a finite size effect. Ng(1)~ el =32 (16)
Particle trapping in the valleysThe origin of the distinct
scaling behavior when>1 may be understood through the  The slope correlations of the surface over a lerigt¥ill
following argument. When the particle moves faster than tthecay by a timer(l)~12/v from Eq. (6). For a valley of
underlying surface fluctuations, after the initial downward|engthl, this time is roughly the time scale for tlwerturn-
ing of the valley, whereby the valley is transformed into a

10 F—m— hill. An event of overturning leads to a displacement of a
I ] particle trapped inside the valley by a distanek The total
i r=0.01(409) — ] time required to produce a displacemen¢ is then the sum
[ 7= 001(1024) -~ of the trapping times inside all the valleys withh which is
2 _ r = 0.1{4096) ------ given by
N _ - §
) r=0UI0U) e o t(&)= J dI(HNg(). (17
10F o 0
1:_ ,,,,, / _ After using Eq.(16), this equation gives(&)~&/v.
/‘ slope = 2/3 ; Equivalently, for a fixed time, the typical displacement of
: the sliding particle is(t) ~ Jvt. The result shows that in the
0.1 s "2' . T "4' ' "5' e regimer > 1, the dynamical exponent for the sliding particle
1 10 10 10 10 10 10 is 1/2.
¢ Finally, we discuss the results for the probability distribu-

FIG. 2. (Color onling The figure illustrates finite size effects in 0N P(0.t,2) of the displacement of the particle at tine
the time evolution of the root-mean-square displacement of the slidt€lative to its location at timeé=0. In Fig. 4, we have dis-
ing particle forr=0.1 (top) andr=0.01 (bottom for lattice sizes ~ Played the results far=0.1 at two widely separated instants
N=1024 andN=4096, respectively. The short straight line at the of time, t=10 and 1d. When the scaling functiori(x)
top is a guide to the eye, and has a slope 2/3. =(X?(1))¥2P(01,2) of the probability distribution is plotted
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0.45 IV. CONCLUSIONS
04 To conclude, we have shown by means of a self-
0.35 consistent argument that the motion of a passive sliding par-
ticle on a fluctuating surface may show nontrivial behavior
0.3 even when the surface is Gaussian, like the Edwards-
~ 0% Wilkinson surface. Specifically, the effective dynamical ex-
< ponent for the motion of the sliding particle may be the same
=02 as, or different from the dynamical exponent of the surface
0.15 fluctuations, depending on the relative time scale of surface
and particle motion. The observed apparent superdiffusive
0.1 dynamics of particle displacement in the EW surface urges
0.05 us to be cautious when the measurements of the passive slid-
ing particle is used to measure the dynamical exponent or

0_ other dynamical properties of the surface itself, as has been
suggested in3]. It might be interesting to extend this study
to look into the effects of changing the relative update fre-
FIG. 4. (Color online The figure shows the scaled probability quency of the particle and surface configurations on the
distribution f (x) = (X2(t))¥2P(01,2) plotted against the scaled dis- steady state characteristics of the problem in a many-particle
tancex=2z/\/(X%(t)) for two widely separated values of time. The context[2,4]. Lastly, simulations on a larger time scale using
good scaling collapse justifies the scaling form used in(Bg.The much bigger lattices would be necessary to determine con-
lattice size isN=1024 and the update frequency ratiais0.1in  clusively if the observed anomalous diffusion is indeed a
this figure. The parameter~1.45 in the Gaussian fit, and is found crossover effect.
to be the same for all values of The data represent an average
over 1000 different surface starting configurations. ACKNOWLEDGMENTS
against the scaled distanke z/ \/(Xz(t)>, we find good col- This work has been supported in part by a gréatant
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