
PHYSICAL REVIEW E 69, 011105 ~2004!
Dynamics of a passive sliding particle on a randomly fluctuating surface

Manoj Gopalakrishnan*
Department of Physics and Center for Stochastic Processes in Science and Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0211, USA

~Received 12 August 2003; published 28 January 2004!

We study the motion of a particle sliding under the action of an external field on a stochastically fluctuating
one-dimensional Edwards-Wilkinson surface. Numerical simulations using the single-step model shows that
the mean-square displacement of the sliding particle shows distinct dynamic scaling behavior, depending on
whether the surface fluctuates faster or slower than the motion of the particle. When the surface fluctuations
occur on a time scale much smaller than the particle motion, we find that the characteristic length scale shows
anomalous diffusion withj(t);t2f, wheref'0.67 from numerical data. On the other hand, when the particle
moves faster than the surface, its dynamics is controlled by the surface fluctuations andj(t);t1/2. A self-
consistent approximation predicts that the anomalous diffusion exponent isf52/3, in good agreement with
simulation results. We also discuss the possibility of a slow crossover toward asymptotic diffusive behavior.
The probability distribution of the displacement has a Gaussian form in both the cases.

DOI: 10.1103/PhysRevE.69.011105 PACS number~s!: 05.40.Jc, 68.35.Ja
-

o
o
ce
o

a
s

n
le
e
la
im
lu

nd
a

in
n
io
e
e
e

m
rd
m

nd
a
ut
n-
la-

of

-
c-

iffer-

ged

ns
sur-
ns,

n-
uc-
d-
alous
-

I. INTRODUCTION

The advection of a passive scalar field~such as tempera
ture! by a turbulent fluid is a well-known problem@1#, and is
an example of a coupled semiautonomous system, where
of the fields evolves on it own, but affects the dynamics
the other. Many such systems have been studied in re
times, such as the dynamics of a particle passively sliding
a randomly fluctuating surface@2–4#, phase separation on
rough substrate@4#, and clustering of particles on a stocha
tically fluctuating surface under the influence of gravity@5#.
These studies have shown that such systems possess a
ber of nontrivial features. For example, hard-core partic
cluster into a fluctuation-dominated phase separated stat@5#
and noninteracting particles have nontrivial density corre
tions @2# in the steady state. It is thus highly desirable to a
for an understanding of the relation between the time evo
tion of the stochastic fluctuations of the underlying field a
the dynamics of the passive scalar, and this is our prim
motivation.

In this paper, we study the dynamics of a passive slid
particle moving on a randomly fluctuating surface. For co
creteness, we choose the surface to be the one-dimens
Edwards-Wilkinson~EW! surface with uncorrelated nois
@6#, whose steady state and dynamical properties are w
known. As we shall see, even this simple example has un
pectedly rich properties.

For clarity of presentation, we shall state the proble
here. Let us consider a one-dimensional fluctuating Edwa
Wilkinson surface, whose equation of motion has the for

]h

]t
5n¹2h1h, ^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!.

~1!
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The Langevin equation for the motion of a particlesliding
on the surface has the form

dX~ t !

dt
52G]xhux5X(t) , ~2!

whereX(t) is the position of the particle on the surface a
G is a friction coefficient. In principle, one could include
random noise term for the motion of the particle also, b
since its only effect is to add a diffusive term to the mea
square displacement, we shall drop it from further calcu
tions.

The time evolution of the mean-square displacement
the sliding particle is given by the equation,

d

dt
^X2~ t !&52G2E

0

t

dt8F~ t,t8!, ~3!

where

F~ t,t8!5^]xh@X~ t !,t#]xh@X~ t8!,t8#& ~4!

is the ‘‘effective’’ noise correlator for the motion of the slid
ing particle, and is equal to the slope correlator of the flu
tuating surface evaluatedalong the particle trajectories. The
angular brackets on both side represents average over d
ent realizations of the noiseh(x,t). Clearly, this is a highly
nontrivial quantity to compute, since it is not obviousa pri-
ori how the slope correlator would behave when avera
over such a set of highly restricted paths.

We outline our main results here. Numerical simulatio
show that when the particle moves much faster than the
face, its dynamics is controlled by the surface fluctuatio
and the mean-square displacement behaves as^X2(t)&;nt.
An argument using the concept of overturning valleys co
firms this result. On the other hand, when the surface fl
tuation is fast, the particle moves in a very dynamic lan
scape, and the mean-square displacement shows anom
diffusion with ^X2(t)&;t2f over the time scales of simula
©2004 The American Physical Society05-1
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tions. A self-consistent approximation which assumes no
relation between a particle trajectory and the underlying s
face height configuration, predicts that the anomalo
diffusion exponent isf52/3, in reasonably good agreeme
with numerical results. We also discuss the possibility t
the observed anomalous diffusion might be simply trans
behavior, and give reasons for the same.

The rest of this paper is arranged in the following way.
the following section, we present the self-consistent appro
mation to evaluate the correlator in Eq.~4!, and discuss its
predictions and limitations. In Sec. III, we present the resu
of numerical simulations of the problem using the single-s
algorithm. In Sec. IV, we summarize our findings and disc
the outstanding questions.

II. THE SELF-CONSISTENT APPROXIMATION

Let us definez5X(t)2X(t8), which, likeX(t) itself, is a
random variable. Let us now sort the set of all availa
surface configurations usingz, i.e., for fixedt and t8, let Sz
denote the set of surface configurations where a sliding
ticle is displaced by a distancez6Dz between timest andt8.
The fraction of such configurations is simplyP(t,t8,z)Dz,
where P(t,t8,z) is the ~unknown! probability distribution
function for particle displacements between timest andt8. It
then follows that

F~ t,t8!5E
2`

`

dzP~ t,t8,z!^]xh@X~ t !,t#]xh@X~ t !1z,t8#&Sz
.

~5!

Note that the average in Eq.~5! is a restricted average, i.e.,
is evaluated over surface configurations in which the slid
particle is moved by a distancez betweent and t8.

Up to now, our treatment has been exact. In order to m
further progress, we make an approximation by assum
that the restricted slope correlator in Eq.~5! is simply the
standard slope correlator of the surface, evaluated at the
of points (0,t) and (z,t8). In other words, we assume that th
particle trajectory is not so strongly correlated with the s
face slope configuration, such that averages of surface c
acteristics are not affected. Numerical results show that
approximation is justified except when the particle motion
slower than the surface fluctuations. We shall discuss
case shortly, and assume for the time being that this assu
tion is valid. This approximation is the most crucial step
our calculation.

For the Edwards-Wilkinson surface, the slope correla
can be computed exactly, and the result is~for t.t8)

^]xh~0,t !]xh~z,t8!&5
D

n
A p

n~ t2t8!
expS 2

z2

n~ t2t8!
D .

~6!

Let us now conjecture the following asymptotic scaling fo
for the probability distribution function of particle displace
ment
01110
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P~ t,t8,z!5
1

j
f S z

j D , ~7!

wherej(t2t8) is the characteristic dynamic length scale
particle motion. The scaling functionf (x) is required to sat-
isfy the normalization*2`

` f (x)dx51. It also follows that the
mean-square displacement is

^X2~ t !&5mj2, ~8!

wherem5*2`
` f (x)x2dx. We now substitute Eq.~6! and~7!

into Eq. ~5!. The effective noise correlator thus becomes

F~ t,t8!5
G~T!

AnT
, T5ut2t8u, ~9!

where

G~T!5
DAp

n E
0

`

dh
f ~Ah!

Ah
e2(j2/nT)h, h5

r 2

j2
. ~10!

We note thatG(T) is proportional to the Laplace trans
form of the function g(x)5x21/2f (x), i.e., G(T)
5 (DAp/n)g̃(l) with l5 (j2/nT) . We now conjecture a
power-law growth of the characteristic length scalej at late
times:

j~ t !.atf, t@t0 , ~11!

wheref is the dynamical exponent that characterize the p
ticle motion andt0 is a microscopic time scale. From th
preceding equations, it is clear that consistency requiref
.1/2. For, if f,1/2, the left-hand side~lhs! in Eq. ~3!
would vanish at larget, whereas the right-hand side~rhs!
would not. The valuef51/2 is also inconsistent with this
equation, since the lhs would be a constant whereas the
would grow asAt at large timet. Thus the only possible
values aref.1/2. We now focus on the large-t limit, where
the Laplace transform variablel→`. The behavior ofG(T)
in this limit follows from the following theorem@8#:

limx→0 x2rg~x!5 liml→`

lr11g̃~l!

r!
, r.21. ~12!

It is reasonable to assume thatf (0) is a nonvanishing
constant, in which caseg(x);x21/2 asx→0. From Eq.~12!,
it then follows thatr521/2, and henceg̃(l); (1/Al) as
l→`. Thus, the asymptotic form ofG(T) is

G~T!.
pD f ~0!

n

AnT

j~T!
, T→`. ~13!

After substituting Eqs.~8! and~9! into Eq.~3!, and using the
largeT form in Eq.~13!, the resulting self-consistent integra
equation forj(t) is
5-2
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j
dj

dt
5

G2

2m

pD

n
f ~0!E

0

t dT

j~T!
. ~14!

We now substitute the power-law scaling form Eq.~11! for
j(T), which gives

a3f~12f!t2f21;
pDG2

2n

f ~0!

m
t12f, t→`. ~15!

After equating the powers of time on both sides, we fi
f52/3, which is the principal result of this paper, along w
the prefactor

a;S DG2

n D 1/3

.

We have thus arrived at the somewhat surprising result
the sliding particle movesfasterthan the surface fluctuations
whose correlation length scales with time asAnt. This su-
perdiffusive behavior formally has its origin in the long
range nature of the effective noise correlatorF(t,t8), which,
from Eq. ~9! and Eq.~13!, has a power-law tail of the form
ut2t8u2f. Similar anomalous diffusive motion of advecte
particles withf52/3 has been shown to occur in the on
dimensional~nonlinear! Burger’s equation with noise@3,7#,
using a mean-field approach.

Before proceeding to discuss the numerical results,
would like to point out that the calculation presented abo
is valid only if lim

t→`
@Ant/j(t)# vanishes, else we would

not be able to use Eq.~12! to arrive at our result. Indeed, it i
quite possible that in the asymptotic limit,j(t);Ant, but
that this regime lies outside the validity of this approxim
tion. In such a case, the anomalous diffusion at early tim
can be still shown to exist, but with a different exponent.
see this, let us consider Eq.~10! again at sufficiently early
times t so thatj2(t)!Ant. In this case,G(T). D/n is a
constant, and after substituting in Eq.~9!, and subsequently
in Eq. ~3!, we find thatj(t);t3/4 whenj2!Ant. From nu-
merical simulations~to be presented in the subsequent s
tion!, we are unable to rule out this possibility. Further d
cussions on this point are presented at the end of Sec. I

III. NUMERICAL RESULTS

In this section, we discuss the results of numerical sim
lations of the problem. The surface is constructed as a se
height variables$hi%, wherei 51,2, . . . ,N andN is the lat-
tice size. Periodic boundary conditions are imposed on
surface. We use the single-step model of the surface@9#,
where the height difference between adjacent lattice po
is restricted, i.e., the clockwise/anticlockwise slop
t i

656@hi 612hi # takes values11 or -1 only. The surface
evolves through the following set of dynamical rules:

~1! If t i
151 andt i

2521, hi→hi12 with probabilityq
(q<1).

~2! If t i
1521 andt i

251, hi→hi22 with probabilityq.
The large-distance, long-time properties of this model

identical to the continuum model in Eq.~1!. We start from a
01110
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orderedheight configuration, wherehi51 wheni is odd, and
hi50 wheni is even. A lattice site is selected at random, a
its height is updated in accordance with the above rules.
the surface configuration, one Monte Carlo step is coun
after N such attempted updates, whereN is the lattice size.
The surface then evolves throughT.10N2 Monte Carlo
time steps in order to reach the steady state. We used
lattice sizes,N51024 andN54096 in our simulations.

For a certain surface configuration in the steady state,
place 100 particles on the surface at randomly selected l
tions. At each Monte Carlo step, after a surface update
complete, a particle is selected at random~with initial posi-
tion at lattice sitei, say! and its position is updated accordin
to the following set of dynamical rules.

~1! If t i
151 and t i

251, the particle moves one lattic
step in the clockwise direction with probabilityp (p<1).

~2! If t i
1521 andt i

2521, the particle moves one lat
tice step in the anticlockwise direction with probabilityp.

Essentially, the rules say that the particle only slides do
when the slope is favorable, and remains stationary whe
is at a local minimum or maximum. The particle displac
ments are measured such that for every move in clockw
direction,X(t)→X(t)11, and for every move in anticlock
wise direction,X(t)→X(t)21. The particles are assume
noninteracting, which is consistent with the single-partic
picture. When the probabilityp.q, the particles moves fas
relative to the surface motion andvice versa. Also, without
any loss of information, we set max(p,q)51. The parameter
we tune in the simulations is the ratior 5p/q. The simula-
tions were run up to 105 Monte Carlo steps forN51024 and
106 Monte Carlo steps forN54096. We computed the prob
ability distribution of the displacement of the particles,
well as the mean-square displacement, as functions of t
The results were averaged over 100 different starting c
figurations forN54096 and 1000 starting configurations f
N51024.

In Fig. 1, we have shown the results for the rms displa
ment of the sliding particle plotted against the quantityqt,
wheret is the number of Monte Carlo steps. The fractionq is
used to scale the time so that all the surface configurat
pass through an almost equal number of updates~in the con-
tinuum language, this is equivalent to using the combinat
nt). We have shown the results for four values of the upd
frequency ratior: 0.01, 0.1, 1, and 10. The results forr
50.01 andr 50.1 offers evidence for the power-law beha
ior j;t2/3 as predicted by the self-consistent argument. F
r .1, on the other hand, the growth of the rms displacem
with time is much slower. In this case, the observed grow
exponent is closer to 1/2 at all times. The caser 51 displays
intermediate behavior, with an effective exponent close
0.56.

Although it is tempting to say that the casesr .1 andr
,1 are characterized by different dynamical exponents,
would like to be cautious here. Our numerical data does
rule out the possibility that the observed anomalous diffus
of the sliding particle whenr ,1 is simply a transient re-
gime, and the asymptotic behavior might be identical for
values ofr. In the scenario discussed in the last paragraph
5-3
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the preceding section, the observed behavior might refle
slow crossover fromj;t3/4 to j;t1/2. The data forr 50.1
shows some bending fort.105, but at the moment we can
not conclusively say whether this shows the crossover
wards a diffusive regime, or simply a finite size effect. W
have checked that a smaller system size (N51024) shows
bending as early ast.104 ~Fig. 2!, which makes it likely
that this is a finite size effect.

Particle trapping in the valleys. The origin of the distinct
scaling behavior whenr .1 may be understood through th
following argument. When the particle moves faster than
underlying surface fluctuations, after the initial downwa

FIG. 1. ~Color online! The figure shows the time evolution o
the root-mean-square displacement of the sliding particle for sev
values of the update frequency. The short straight line at the bo
is a guide to the eye, with slope 2/3. Whenr ,1, the dynamic
exponent is close to 2/3, whereas whenr .1, it is close to 1/2. For
r 50.01, there is an early-time regime where the growth expone
smaller than 2/3, but the asymptotic behavior is identical to tha
r 50.1. The lattice size in these simulations isN54096.

FIG. 2. ~Color online! The figure illustrates finite size effects i
the time evolution of the root-mean-square displacement of the
ing particle forr 50.1 ~top! and r 50.01 ~bottom! for lattice sizes
N51024 andN54096, respectively. The short straight line at t
top is a guide to the eye, and has a slope 2/3.
01110
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slide towards the local minimum, it gets ‘‘trapped’’ there. A
all future times, the motion of the particle is ‘‘slaved’’ to th
dynamics of this local minimum. The long-time dynamics
the particle may be visualized using the concept ofvalleysin
the surface. A valley is defined as a linear stretch of
surface below a certain reference height, which we choos
be the instantaneous height at the starting location of
particle ~Fig. 3!. It is well known that any instantaneou
height configuration of a EW surface relative to a referen
point on the surface is a random walk~RW!, which returns to
the origin afterN steps. Thus, the length distribution of th
valleys is simply the distribution of return times of a on
dimensional RW to its starting point, which follows a powe
law decay:P( l ); l 23/2 for l !N @10#. Let us now consider a
section of the surface with lengthj and let Nj( l ) be the
number of valleys of lengthl within this section. Since we
require*dlNj( l ) l 5j, it follows that Nj( l ) has the scaling
form

Nj~ l !;Aj l 23/2. ~16!

The slope correlations of the surface over a lengthl will
decay by a timet( l ); l 2/n from Eq. ~6!. For a valley of
length l, this time is roughly the time scale for theoverturn-
ing of the valley, whereby the valley is transformed into
hill. An event of overturning leads to a displacement of
particle trapped inside the valley by a distance; l . The total
time required to produce a displacement;j is then the sum
of the trapping times inside all the valleys withinj, which is
given by

t~j!.E
0

j

dlt~ l !Nj~ l !. ~17!

After using Eq. ~16!, this equation givest(j);j2/n.
Equivalently, for a fixed timet, the typical displacement o
the sliding particle isj(t);Ant. The result shows that in the
regimer .1, the dynamical exponent for the sliding partic
is 1/2.

Finally, we discuss the results for the probability distrib
tion P(0,t,z) of the displacement of the particle at timet,
relative to its location at timet50. In Fig. 4, we have dis-
played the results forr 50.1 at two widely separated instan
of time, t5102 and 104. When the scaling functionf (x)
5^X2(t)&1/2P(0,t,z) of the probability distribution is plotted

ral
m

is
f

d-

FIG. 3. Illustration of a valley in the single step model: Th
open circle shows the position of the particle at timet50 and the
filled circle shows its current position. The horizontal straight li
divides the surface into valleys and hills.
5-4
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against the scaled distancex5z/A^X2(t)&, we find good col-
lapse of the data, which provides ana posteriorijustification
for using this scaling form. It is also remarkable that t
scaling function is very well represented by a Gaussian~see
the fit in the figure!.

FIG. 4. ~Color online! The figure shows the scaled probabili
distribution f (x)5^X2(t)&1/2P(0,t,z) plotted against the scaled dis
tancex5z/A^X2(t)& for two widely separated values of time. Th
good scaling collapse justifies the scaling form used in Eq.~7!. The
lattice size isN51024 and the update frequency ratio isr 50.1 in
this figure. The parameters'1.45 in the Gaussian fit, and is foun
to be the same for all values ofr. The data represent an avera
over 1000 different surface starting configurations.
d

01110
IV. CONCLUSIONS

To conclude, we have shown by means of a se
consistent argument that the motion of a passive sliding p
ticle on a fluctuating surface may show nontrivial behav
even when the surface is Gaussian, like the Edwar
Wilkinson surface. Specifically, the effective dynamical e
ponent for the motion of the sliding particle may be the sa
as, or different from the dynamical exponent of the surfa
fluctuations, depending on the relative time scale of surf
and particle motion. The observed apparent superdiffus
dynamics of particle displacement in the EW surface ur
us to be cautious when the measurements of the passive
ing particle is used to measure the dynamical exponen
other dynamical properties of the surface itself, as has b
suggested in@3#. It might be interesting to extend this stud
to look into the effects of changing the relative update f
quency of the particle and surface configurations on
steady state characteristics of the problem in a many-par
context@2,4#. Lastly, simulations on a larger time scale usi
much bigger lattices would be necessary to determine c
clusively if the observed anomalous diffusion is indeed
crossover effect.
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